《用数对确定位置》教学反思
发表日期:2021/4/15 10:13:52 作者:韩一凡 有646位读者读过
《用数对确定位置》教学反思
《确定位置》这节课是苏教版四年级下册第八单元的内容,这一单元主要是让学生能够理解什么是列和行,知道确定第几列、第几行的规则;初步理解数对的含义,会用数对表示平面上点的位置(限正整数)。而我这一节是第一课时,这一课时主要是要求学生能够用数对来表示所在位置。
在此之前,学生已经会有语言文字描述自己在教室中的位置,在日常生活中积累了用类似“第几排第几个”的方式描述物体位置的方法。数对的学习将为学生以后学习直角坐标系打下基础。
有效的数学教学应该基于学生的已有经验。唤醒学生原有知识,了解学生的生活经验和已有知识背景,是学生学习的基础。因此我在教学时,首先通过让学生自己来描述小军的位置,激活学生头脑中已有的描述物体位置的经验,然后通过交流评价,自己认识到这些方法的不足,引发学生产生用统一、简明的方式来确定位置的需求,体会学习新知的必要性。“数对”这一数学知识对于学生来说比较抽象,为了解决这一问题,我注意了以下几点。
1.本节课的教学先让学生看情境图,说出小军的位置,唤起了学生对已有的用“第几组第几个”或“第几排第几个”的知识来确定位置的经验,帮助学生找到新旧知识的连接点。然后让学生根据“小军坐在第4组第3个”和“小军坐在第3排第4个”确定小军的位置,有的从左边数起,有的从右边数起,有的从前边数起,有的从后面数起,这样找出的位置不是唯一的,使学生认识到这样描述位置的方法不够准确。进而让学生将叙述的语句改准确,从而知道了要统一说法。最后让学生说一说你在班级是第几列的小游戏,帮助学生们进一步认识列和行。接着我又要求学生用列和行说一说你在班级的位置和你同桌的位置,通过小游戏帮助学生们加深了对列和行的认识。
2.接着我又要求学生记录下几个同学的位置,这是学生们发现如果全部记录下来太长了,时间上也来不及。从而引导学生提出问题有没有一种既准确又简明的方法呢?这样就使学生产生了学习新方法的内在需要,有效地激发了学生学习新知的积极性。 然后我要求学生自己想一想设计出一个你认为比较方便的方法,接着再要求学生写在黑板上。最后我在学生设计的基础上用数对表示位置的基本方法,使学生认识到数对中的第一个数表示“列”数,第二个数就表示“行”数以及这个数对的读法。
3.通过多种形式的练习,既激发了学生学习的兴趣,又提高了学生的能力。首先是结合学生在教室中的位置,通过做游戏,说位置,猜朋友等多种形式,使学生进一步巩固了对行、列和数对含义的认识。接着我又通过小游戏猜猜他是谁,使学生们进一步认识数对,并且明确了要想确定具体的位置必须要同时知道数对中的两个数字。我又安排了找座位的小游戏,让学生们找到自己的位置,其中我准备了一张(6,6)的卡片,然后让学生自己修改卡片,找到自己的位置,从而让学生进一步的认识数对,并且初步体会什么是一一对应。
4.最后让学生结合生活实际用数对来确定墙面瓷砖和地面花色地砖的位置,这里注意通过比较瓷砖和地转的位置特征,在观察比较的基础上让学生充分交流,使学生发现数对中的一些规律,如同一列中,数对中的前一数相同;同一行中,数对的后一个数相同等等。接着让学生充当小小的设计师,设计一下增添的地砖所贴的位置,巩固了新知,又培养了美感,还提高了学生实践创新的能力。
教学永远是一门有遗憾的艺术。尽管我努力想上好这一节课,但仍然有很多不足之处:
1.在第一环节中让学生用自己的方法把方队中小军的位置描述出来,学生书写速度较慢,浪费时间,在试讲的过程中也尝试过让学生口头表述,后面学生受前面发言学生影响,往往不愿意表达自己的描述方法,所以这一环节还需精加工改进。
3.在处理找座位这一环节的时候,应该着重处理怎么修改就可以找到自己座位的这一环节,让学生能够体会一一对应的。而且在上课的时候总是说得过多,不能放开手让学生去讨论探索,而是把学生牢牢地扎在手中,让学生失去了自主学习的机会。
4.此外,联系实际举例:说说生活中哪些地方用到了数对思想,学生非常缺少这方面的经验,往往举不出恰当的例子,是否能改为先介绍“地球上经纬线知识”,课后再让学生在生活中寻找应用了数对思想确定位置实例,也在思考中。
5.这节课不仅仅要教会学生用“数对”的方法来表示位置,更重要的是让学生在解决问题中,构建“数对” 模型,经历用简洁的数学符号确定位置这一抽象的过程。学生在经历了由文字描述到符号表达,由繁到简的再创造过程中,进一步感受到了数学的抽象化、符号化而本节课只是让学生感知了如何用数对来表示学生的位置,并没有做到要从两个维度来考虑的数学本质,同时对数对的有序性体现的不够充分。
6.一节数学课虽然结束了,但学生的思维没有终止,应该要想方设法让学生带着问号离开小课堂,走进生活的大课堂,因为提出一个问题比解决一个问题更重要。课堂上,学生生成的问题很多,如:生活中还有哪些地方可以用数对来确定位置?确定列的时候为什么规定从左往右数起,确定行的时候为什么规定从前往后数起?生活中很多物体的位置不是竖成列,横成行,那怎么确定呢?而我在这一节课并没有考虑到这些知识点。