您的位置 >> 首页 >> 青年教师博客>>李磊>> >> 正文

运算律教学反思

发表日期:2023/5/16 13:25:27 作者:李磊 有386位读者读过

运算律教学反思

学生从一年级就开始接触加法计算,对加法积累了较多的感性认识,这是学习加法交换律和结合律的基础。两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解决之间的共同特点,初步感受运算规律。然后让学生根据对运算律的出步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。

在教学过程中,我觉得下面几点很重要:

1、注意引导学生观察、比较、体验。在运用定律,进行简便计算的过程中,我并没有直接让学生进行简便计算,而是通过填空的形式进行比较,你比较欣赏哪一种,使学生初步感觉到运用加法定律可以简算。在此基础上出示例题,这样学生是在充分体验的基础上真正感受到运用运算定律的优点,可以培养优化意识,让更多的学生自然而然地产生运用定律进行简算的欲望,从而再次激发学生的求知兴趣。在学生体验到运用加法定律能够简算以后,我再提出:是不是所有的算式都能简算呢?并在巩固练习中穿插了一道不能简算的题目,进一步培养学生注意观察、分析问题的能力。

2、在本单元的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。针对平时学生练习中的错误用加法结合律简算。在连线题目中,加法运算律的扩展型,通过练习让学生明白加法运算律也可以是两个数的差,也可以是三个数的和,使学生对加法运算律的内容得到进一步完整。

总之,在本单元的教学中新理念有所体现,但在具体的操作中还缺乏成熟的思考,学生的积极性没有充分调动起来,而且在生活情境的创设中对情境的趣味性、兴趣性、情境性不能很好的体现。

上了这节课后的思考:什么是猜想?怎样验证?

教学中,让学生举例验证两个数相加,交换加数的位置和不变出现学生直接写等式而实际并未真正进行有效的验证,这就反映出学生对 什么是猜想?怎样去验证? 这一问题的模糊。该怎样让学生明确呢?可不可以在猜想提出后,就问学生你打算怎样验证呢? 让学生充分地呈现自己的验证构想,可能会有学生说写一个加法算式,再交换两个加数的位置,加上等号;也会有学生意识到应该先算一算两个算式的和是否相等,才能添上这一等号。教师在让学生比较哪种验证的方法更合理、更科学的过程中,让学生充分感受到两个算式中间由 ? 到 = 的转换过程才是科学的验证过程。